

Separations of Actinide Elements

Monica C. Regalbuto

Workshop for Graduate Students from the Big 10 Nuclear Engineering Departments

July 20-22, 2004

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Actinide Separations

Why are they needed?

- Can address major technical, social and political issues related to disposal of nuclear wastes
- Regulatory requirements associated with actinide waste disposal are more stringent than those for other radioactive wastes
 - Waste present a greater health hazard
 - Isotopes have long half lives

Sources of actinides

- "Legacy waste" from weapons production
- Spent nuclear fuel
- Medical and industrial isotope production wastes

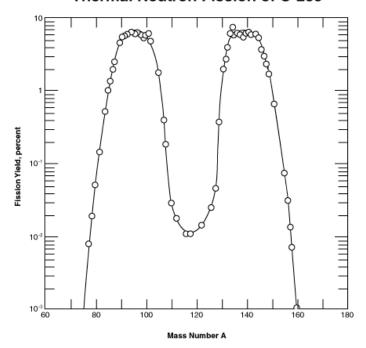


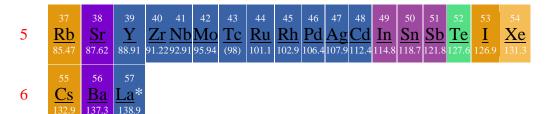
Actinides Are Separated from What?

Mainly from

- Each other

- Lanthanides (also known as Rare Earths)




Actinides Are Separated from What?

From other fission products

Fission products with mass numbers around 90 and 140 have particularly high fission yields

Thermal Neutron Fission of U-235

What are the Actinides of Most Interest?

Those with a low atomic-number

- Elements beyond Cm are present in very low concentrations
 - Produced only under highly specialized circumstances

Those that are alpha-emitters

 Radium and radon are decay daughters of actinides

Isotope	Atomic No.	Half Life
Ra-226	88	1.6E+03 y
Rn-222	86	3.83 d

Isotope	Atomic No.	Half Life
U-232	92	69.8 y
U-233		1.59E+05 y
U-234		2.46E+05 y
U-235		7.04E+08 y
U-238		4.47E+09 y
Np-237	93	2.14E+06 y
Pu-238	94	87.7 y
Pu-239		2.41E+05 y
Pu-240		6.56E+03 y
Pu-242		3.74E+05 y
Am-241	95	4432.7 y
Am-242m		141 y
Am-243		7.36E+03 y
Cm-243	96	30 y
Cm-244		18.1 y
Cm-245		8.5E+03 y
Cm-246		4.73E+03 y

Non-technical Issues Associated with Actinide Separations

- Primary applications are nuclear power generation and weapons production
 - Because the technology can be applied to the production of weapons strict controls are imposed due to proliferation risks
 - Material accountability
 - Safeguards and security
 - From an R&D perspective these controls add a layer of complexity that does not exist in other separation applications

Technical Challenges to Actinide Separations

Concentrations in either spent fuel or in tank HLW will vary widely

- Must design separation processes robust enough for a wide range of feeds
- Feed characterization requires significant analytic capability

Concentrations in feeds are very dilute

- Low concentrations in spent fuel (except for U)
- Early nuclear area waste management approach was based on dilution and dispersal

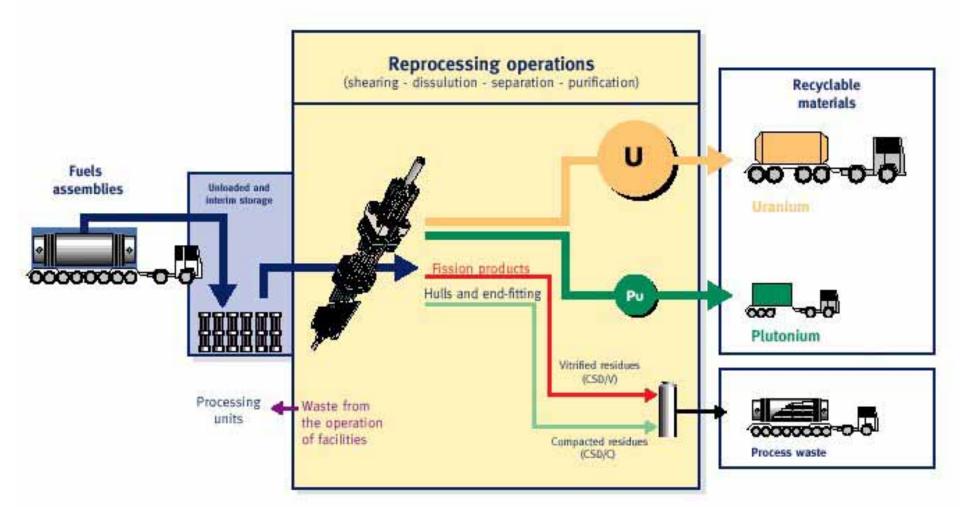
Chemistry of actinides is complex

- Actinides form multiple valence states
- Similar to that of lanthanides

State of the Art in Actinide Separation

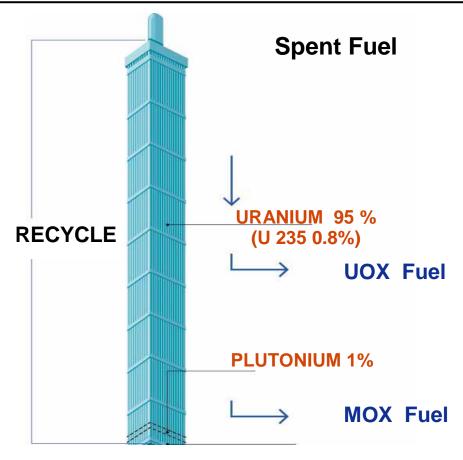
Aqueous based processes

- Liquid-liquid extraction
- Precipitation
- Ion exchange
- Membranes
- Crystallization
- Supercritical fluid extraction


Dry processes

- Pyroprocessing
 - Electrorefining
 - Oxide reduction
- Volatilization
- Others

Actinide Separation – Fuel Cycle


Slide courtesy of COGEMA

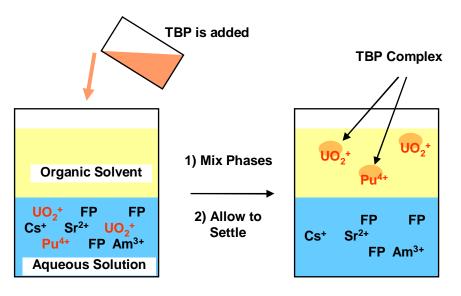
Spent Fuel Contains 96% Recyclables

Slide courtesy of COGEMA

Actinide Separations Capabilities at ANL

ANL research on actinide separations dates back to the late 1940s

- Liquid-liquid extraction
- Pyrochemical processing
- Spent fuel treatment
- TRU, high and low-level waste treatment
- Trace analysis of radionuclides



Liquid-liquid Extraction

Solvent Extraction Principle

- Based on relative stability of a metal species in two immiscible liquids
 - The metal to be separated is contacted with both liquids and is partitioned into each at a constant ratio (the distribution coefficient)
- Multiple extractions
 - Not always possible to remove 100% metal with one contact.
 - Options are to greatly increase amount of solvent volume or to use multiple contacts

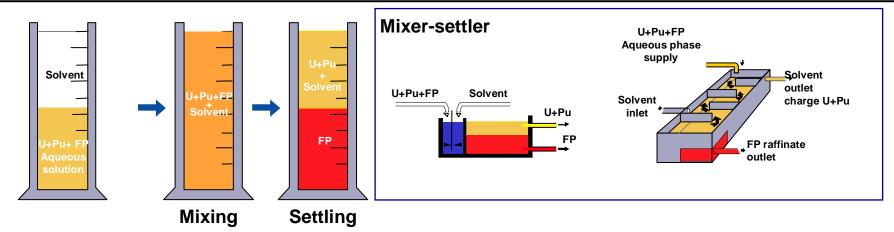
Solvent Extraction Equipment

Centrifugal Contactors

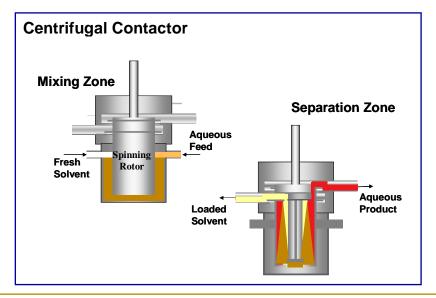
- Short residence time protects solvent from radiolysis and hydrolysis degradation
- High efficiency
- High throughput
- Step-wise phase contact
- Compact unit
- Quickly reaches steady state

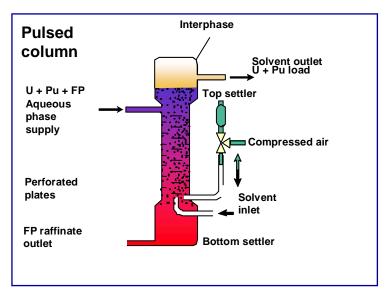
Mixer-settlers

- Long residence time
- Step-wise phase contact
- Extraction combined with reaction


Pulsed Columns

- Long time to reach steady state
- Products with low density difference, low interfacial tension or having a tendency to form emulsions
- High throughput

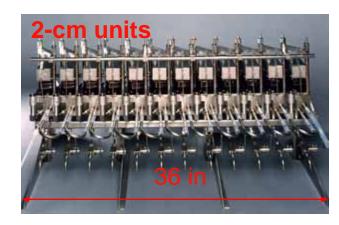




Solvent Extraction Equipment

Figures courtesy of ANL and COGEMA

ANL Solvent Extraction Expertise


- Equipment design
- Process modeling and design
- Process demonstration

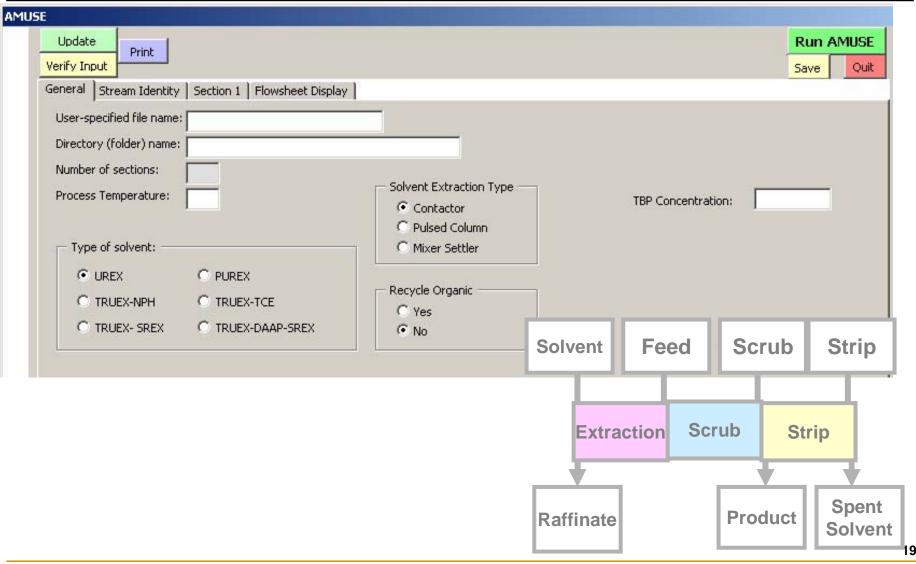
Equipment Design - ANL Centrifugal Contactor

Pilot-scale Centrifugal Contactors

Rotor	Nominal
Diameter	Throughput
cm	L/min
2	0.04
4	0.4
9	10
10	12 ——
12	20
25	120

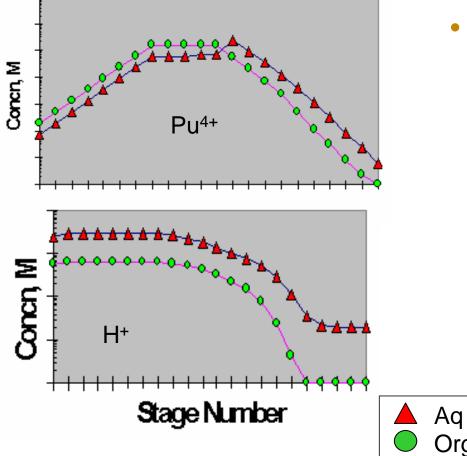
 \rightarrow 0.65 t/d

17


Process Design and Modeling - AMUSE

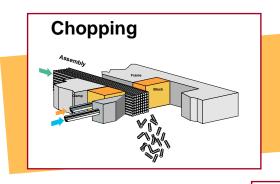
- The Argonne Model for Universal Solvent Extraction—AMUSE is a tool we use to:
 - Design and optimize solvent extraction flowsheets
 - PUREX, UREX, TRUEX, SREX
 - Perform sensitivity analysis to determine key process variables and their control bound
 - Flow rates, number of stages, concentration of feed components, concentration of solvent, temperature

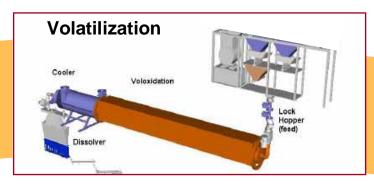
AMUSE - General Input Form

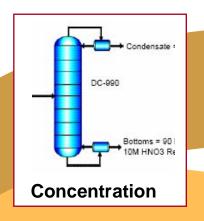


AMUSE - Results

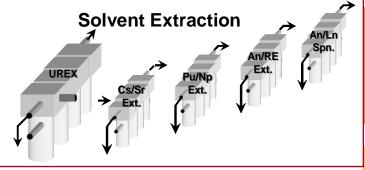
GRAPHICAL

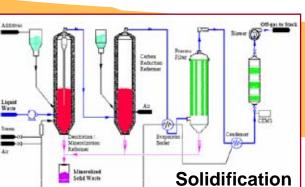


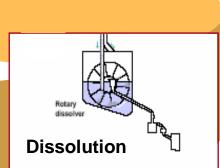

TABULAR


- Tabular reports are created for
 - Influent and effluent compositions and flow rates
 - Stage profiles that include
 - Distribution ratios
 - Component concentrations in organic and aqueous phases

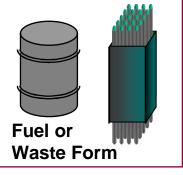
Aqueous Spent Fuel Treatment Facility







Figures courtesy of ANL


WGI and COGEMA

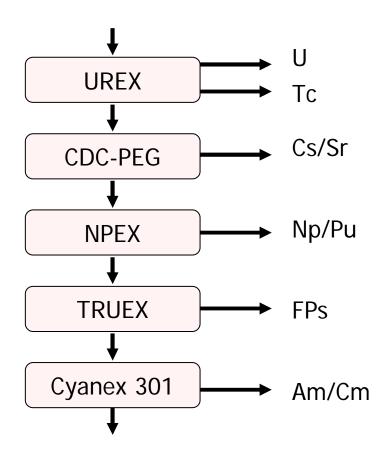
21

Process Demonstration – UREX+

- Process being developed as part of the Advanced Fuel Cycle Initiative (AFCI)
- Objective:
 - Demonstrate that all desired spent fuel constituents can be separated to meet required specifications by aqueous processing
- ANL work is centered on process design, modeling, and demonstration

Process Demonstration – UREX+

- Spent fuel dissolution
- Aqueous based separations:
 - A series of five solvent-extraction process which separates spent fuel into six product and waste streams
 - U₃O₈ for recycle or disposal as LLW
 - Np/Pu for mixed oxide fuel for thermal reactors
 - Tc and I for immobilization as HLW
 - Am/Cm for fast-reactor fuel
 - Cs/Sr for decay storage
 - Mixed fission products for repository disposal

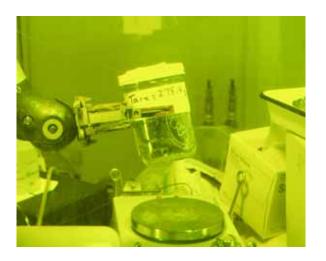

Process Demonstration – UREX+

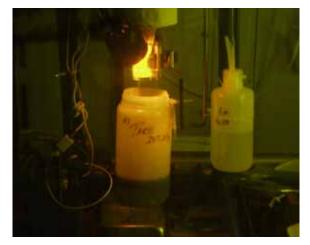
Flowsheets

Developed using the AMUSE code

Equipment

- Three ANL-designed 2-cm contactors were used, set up in a shielded cell, a glovebox, and a vacuum-frame hood
- Can process ~2 kg/day spent fuel (heavy metal)


Process Demonstration – UREX+ Spent Fuel Dissolution

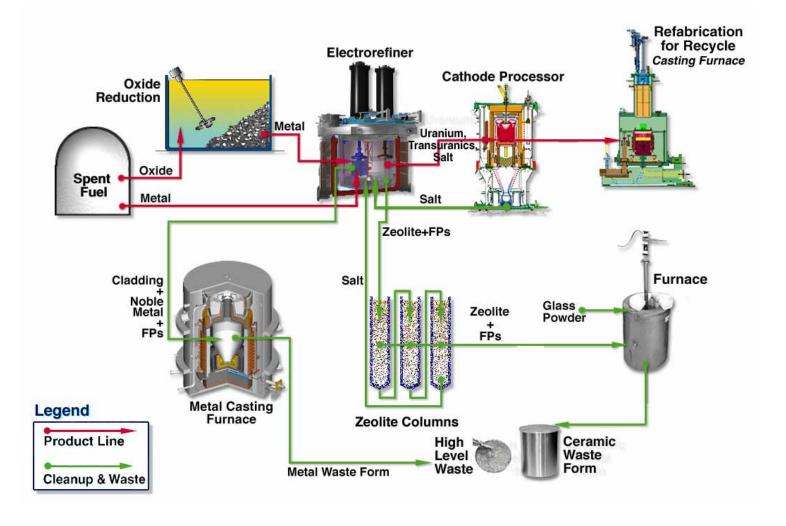

ANL-designed 2.25 L 304L SS pressure vessel

- UO₂ was completely dissolved
- Cladding hulls were very clean
- Sludge was minimal and easily filtered
- Solution was stable

Process Demonstration – UREX+ Results

All processes show high promise for meeting process goals

- Disposal of uranium as class C LLW
- Technetium fissile content
- Pu/Np MOX fuel fabrication
- Disposal of Cs/Sr as LLW
- Excellent selectivity for the desired products demonstrated for all processes



Pyroprocessing

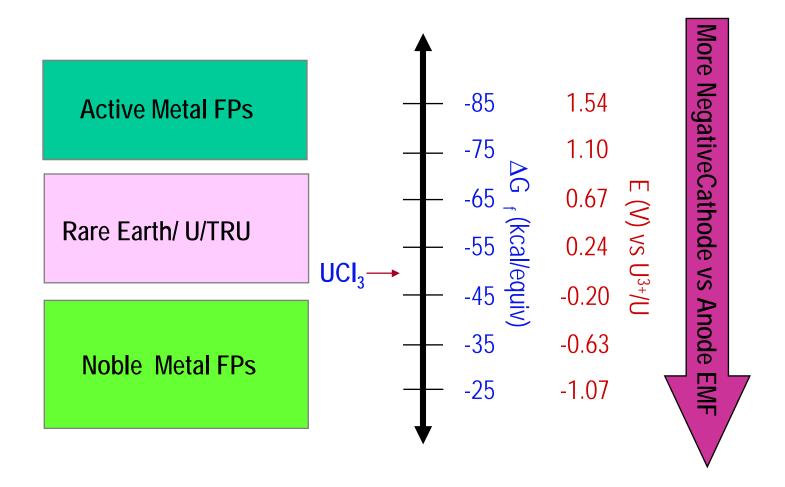
Pyroprocessing Oxide Fuel

Oxide Reduction Process

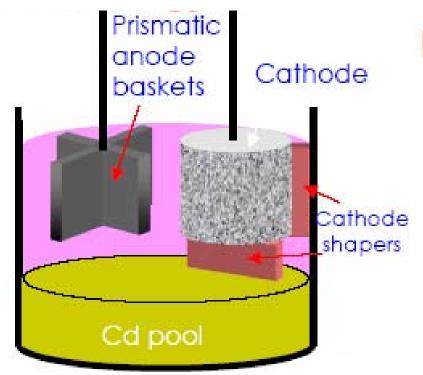
- Goal develop a commercially viable process for reducing spent fuel oxides to metals
 - High product quality
 - High throughput
 - Simple engineering
- Cathode process $MO_x(s) + 2xe^- = M(s) + x O^{2-}$
- Anode process

$$2 O^{2-} = O_2(g) + 4 e^{-}$$

Oxide Reduction Cell and Product


Why Electrorefine Uranium

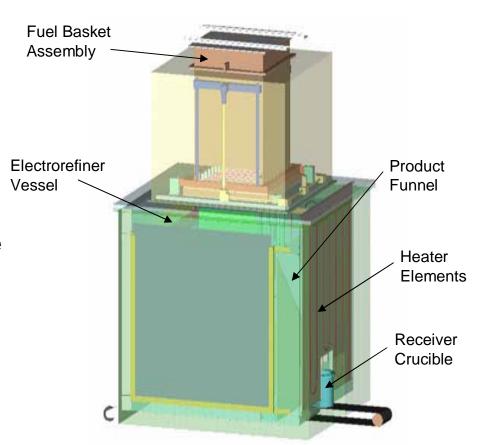
- Separate uranium from spent nuclear fuel for recycle or disposal as LLW
 - EBR-II (metal)
 - LWR fuel (oxide)


Thermodynamic Basis

Pyroprocessing Equipment - Electrorefiner

Mk-V ACM - Anode Assembly

Engineering-Scale Electrorefiner


ANL Pyroprocessing Expertise

- Equipment design
- Process modeling and design
- Process demonstration

Equipment Design

- High throughput electrorefiner
- Electrolytic oxide reduction
- Pyro-contactors
- Liquid cadmium cathode
- Cathode processor
- Metal waste form casting furnace
- Pressureless consolidation for ceramic waste forms

High Throughput Electrorefiner Prototype

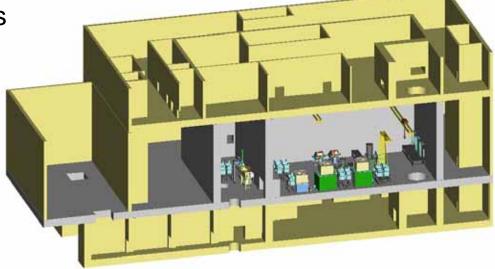
Process Design

Integration of unit operations to provide an economical recycle process for commercial oxide fuel treatment

- Develop a process flowsheet for an integrated pyroprocess oxide-fuel recycle facility
 - Reference-case throughput of 100 tonne/yr of initial heavy metal
- Prepare overall requirements to encompass:
 - Individual operations
 - Facility layout
 - Mechanical and electrical equipment design
 - Maintenance and safeguarding
- Generate conceptual designs of the facility and the individual pieces of equipment

Process Modeling

Optimize facility using the operations model


- Evaluate equipment layout to minimize materials transfer, to simplify access to services, and to optimize equipment spacing
- Verify facility design for throughput requirements
- Identify design shortcomings
- Provide efficiency data on resources
- Determine operational bottlenecks
- Test proposed changes for effectiveness
- Provide equipment utilization data
- Assess moving from batch operations to semicontinuous operations
- Develop an operations model of the facility
- Specify control interface requirements

Process Demonstration - PYROX

- Process for the treatment of spent light water reactor fuels to recover actinides
 - Recycle in advanced nuclear reactors
 - Stabilize fission products for repository storage
- Flowsheets and proof-of-concept tests for treatment of
 - Dispersion fuels (cercer and cermet)
 - Carbide and nitride fuels
 - Particle fuels

3-D Schematic of PYROX Facility

Other ANL Capabilities Related to the Fuel Cycle

ANL Capabilities Related to the Fuel Cycle

- Separations
- Repository testing and modeling
- Materials engineering
- Domestic nuclear event attribution
- Hydrogen production

